Startuj z nami!

www.szkolnictwo.pl

praca, nauka, rozrywka....

mapa polskich szkół
Nauka Nauka
Uczelnie Uczelnie
Mój profil / Znajomi Mój profil/Znajomi
Poczta Poczta/Dokumenty
Przewodnik Przewodnik
Nauka Konkurs
uczelnie

zamów reklamę
zobacz szczegóły
uczelnie
PrezentacjaForumPrezentacja nieoficjalnaZmiana prezentacji
Proces rozwiązywania zadań

Od 01.01.2015 odwiedzono tę wizytówkę 695 razy.
Chcesz zwiększyć zainteresowanie Twoją jednostką?
Zadzwoń do Nas!* - tel. 606-...-... ->>>
* szkolnictwo.pl - najpopularniejszy informator edukacyjny - 1,5 mln użytkowników miesięcznie



Platforma Edukacyjna - gotowe opracowania lekcji oraz testów.



 

  Jedną z podstawowych funkcji szkoły oraz wszelkich form nauczania i wychowania jest przekaz metody, sprawnego sposobu osiągania tego, co powinno być uzyskane jako skutek rozwiązania zadania.

     Każda szkoła dostarcza nam przede wszystkim wzorców rozwiązań zadań typowych. Oprócz tych zadań istnieją także inne, różnie nazywane: czasem jako zadania nowe, trudne, innym razem jako zadania twórcze. Metodami rozwiązywania takich właśnie zadań – dla których nie ma jednoznacznie wyznaczonych algorytmów, wzorców ich rozwiązywania – zajmuje się heurystyka.

     W wielu pozycjach literatury dydaktycznej można znaleźć opisy postulowanych metod postępowania, metod heurystycznych „sprzyjających odkryciu rozwiązania”. Szczególną uwagę zwróciłam na te metody, które – jak twierdzą ich autorzy – powinien stosować także uczeń, jeśli chce skutecznie rozwiązywać zadania, zwłaszcza zadania pojawiające się na lekcjach matematyki. Te modele metod postępowania w procesie rozwiązywania zadań, przedstawione najczęściej w postaci wskazówek heurystycznych pogrupowane są w kilka etapów, faz pracy nad zadaniem.

     G. Polya (1964) wyróżnia cztery fazy w rozwiązywaniu zadania, które skrótowo można by scharakteryzować następująco:

  1. zrozumienie zadania – co jest niewiadome?, co jest dane?, jaki jest warunek?,
  2. układanie planu – pomysł, wykorzystanie zadania analogicznego, niekiedy przeformułowanie zadania lub rozwiązanie zadania prostszego,
  3. wykonanie planu – wykonanie i sprawdzenie kolejnych kroków, zapis rozwiązania,
  4. „rzut oka wstecz” – sprawdzenie i uzasadnienie rozwiązania, przeanalizowanie czy wynik można otrzymać w inny sposób, czy otrzymany rezultat lub metodę można wykorzystać do innego zadania.
Radziecki dydaktyk P. M. Erdniew (1978) wyróżnia także cztery, wzajemnie ze sobą powiązane etapy pracy ucznia nad zadaniem:
  • ułożenie matematycznego zadania,
  • wykonanie działania,
  • sprawdzenie wyniku,
  • przejście do pokrewnego, lecz bardziej złożonego zadania.
Niemiecki dydaktyk E. Wittman (1974) wyróżnia dla zadania, które jest elementem ciągu matematycznych problemów, następujące fazy pracy ucznia:
  • zrozumienie zadania - objaśnienie zadania, ustalenie danych informacji, sporządzenie szkicu sytuacji, jasne sformułowanie celu,
  • znalezienie rozwiązania – zapamiętanie ważnych informacji, przetworzenie ich, znajdowanie potrzebnych reguł,
  • sformułowanie rozwiązania – sprawdzenie rozwiązania,
  • dyskusja przebiegu rozwiązania – stosowane reguły, zestawienie z wcześniejszymi wiadomościami,
  • przejście do kolejnego zadania w ciągu matematycznych problemów.
       W klasyfikacjach P. M. Erdniewa i E. Wittmanna zadanie pojawia się w ciągu matematycznych problemów.

     Kolejna propozycja postępowania w procesie rozwiązywania zadania pojawia się w opracowaniu metodycznym pod redakcją J. Górskiej „Z doświadczeń nauczycieli matematyki”, gdzie wyróżnione zostają trzy etapy:
  • zapoznanie się z treścią zadania – analiza językowa treści zadania, zapis treści zadania (rysunek, pomoc poglądowa), rozbiór zadania dokonany metodą analityczną lub syntetyczną,
  • rozwiązanie zadania – plan rozwiązania zadania, rozwiązanie zadania, wzór rozwiązania,
  • sprawdzenie wyniku – w związku z warunkami występującymi w treści zadania.
      Ta klasyfikacja ogranicza ostatnią fazę pracy ucznia nad zadaniem do sprawdzenia wyniku rozwiązania. Natomiast w trzech poprzednich klasyfikacjach ostatnim etapem jest tzw. „rzut oka wstecz” lub „rzut oka wprzód”, którego celem jest „przedłużenie” rozwiązywania zadania, dyskusja nad nim.

     Korzystając z powyższych rozważań można by wyróżnić następujące problemy do których uczeń powinien się ustosunkować w pracy nad zadaniem tekstowym:
  1. Uważne przeczytanie treści.
  2. Ustalenie danych, szukanych.
  3. Zapis informacji zawartych w zadaniu:
    • Schematy graficzne,
    • Zapis algebraiczny.
  4. Planowanie rozwiązania zadania:
    • Rozpatrzenie wszystkich możliwych przypadków;
    • Ustalenie co i w jakiej kolejności należy obliczyć;
    • Dobór odpowiedniego schematu rozwiązywania – np.: wykorzystanie schematu rozwiązywania analogicznego zadania.
  5. Rozwiązanie zadania.
  6. Kontrola rozwiązania:
    • Sprawdzenie zgodności odpowiedzi z warunkami zadania;
    • Rozważenie innych możliwości rozwiązania.
Czy jednak w rozwiązywaniu zadań uczniowie ustosunkują się do poszczególnych etapów postępowania?

     Współczesna heurystyka zwraca uwagę na nieosiągalność metody – ideału. G. Polya twierdzi: „Wprawdzie nikt jeszcze nie dotarł do Gwiazdy Polarnej, wielu jednak, spoglądając na nią, znalazło właściwą drogę.” Dlatego dąży się do wypracowania dostatecznie ogólnych i wiarygodnie skutecznych systemów postępowania, prowadzących do rozwiązania zadania i dlatego bardzo duże znaczenie ma znajomość metod postępowania związanych z procesem rozwiązywania zadań.

mgr Jolanta Krzyżek

Umieść poniższy link na swojej stronie aby wzmocnić promocję tej jednostki oraz jej pozycjonowanie w wyszukiwarkach internetowych:

X


Zarejestruj się lub zaloguj,
aby mieć pełny dostęp
do serwisu edukacyjnego.




www.szkolnictwo.pl

e-mail: zmiany@szkolnictwo.pl
- największy w Polsce katalog szkół
- ponad 1 mln użytkowników miesięcznie




Nauczycielu! Bezpłatne, interaktywne lekcje i testy oraz prezentacje w PowerPoint`cie --> www.szkolnictwo.pl (w zakładce "Nauka").

Zaloguj się aby mieć dostęp do platformy edukacyjnej




Zachodniopomorskie Pomorskie Warmińsko-Mazurskie Podlaskie Mazowieckie Lubelskie Kujawsko-Pomorskie Wielkopolskie Lubuskie Łódzkie Świętokrzyskie Podkarpackie Małopolskie Śląskie Opolskie Dolnośląskie